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ABSTRACT
Dynamic changes in ship maneuverability challenge the accuracy and effectiveness of ship maneu-
vering models. This paper proposes an online prediction method based on the adaptive weighted
ensemble learning framework, which can adaptively update the model according to changes in
maneuverability, especially for reoccurring changes. The method contains two main mechanisms:
the change monitoring mechanism and the adaptive weighting mechanism. The former identifies
the change in ship dynamics and decides when to incorporate a new base model; the latter adjusts
the weights of the base models to align with current scenarios, thus ensuring the predictive accu-
racy. To assess themethod’s effectiveness under varying ship dynamics, the online prediction of ship
maneuvering motions under speed-induced dynamic changes is investigated. Compared with the
offline model, the result demonstrates the superiority of the adaptive weighted ensemble model.
The proposed method can consistently provide accurate predictions in the scenarios with reoccur-
ring changes, and can also enhance the model capability by adjusting weights to cope with some
unencountered changes.
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1. Introduction

Accurate predictive models of ship maneuvering motion
are crucial for decision support systems (Wu et al., 2022)
and digital twins (Hatledal et al., 2020; Nielsen et al.,
2022) in maritime operations. This importance has been
rising with the advancement of Maritime Autonomous
Surface Ships (MASS). However, established models
may fail under real-world conditions due to changes
in ship loading conditions (Lan et al., 2023; Yasukawa
et al., 2022), navigational patterns (Okuda et al., 2023),
and external environmental factors (Wang et al., 2021).
Therefore, adaptable modelling that can handle changes
in ship maneuverability is particularly important.

The data-driven modelling method based on navi-
gation data has the potential to handle ship dynamic
changes (PANDA, 2023). This approach is less time-
consuming than the widely used captive model tests and
computational fluid dynamics (CFD) techniques (Liu
et al., 2018; Xiang et al., 2023). In addition, the data-
driven method can be applied to full-scale ships without
the constraints of large specialized facilities and com-
putational resources. This efficiency and flexibility make
it more beneficial for adaptive modelling under varying
dynamic characteristics.

CONTACT Zihao Wang zihaowang@shu.edu.cn

In the realm of data-driven modelling, there are two
primary modes: online and offline. Offline models are
static, built from a predetermined dataset to capture
specific dynamic features (Silva & Maki, 2022; Wakita
et al., 2022; Wang et al., 2020; Wang et al., 2022; Xue
et al., 2021). In contrast to offline models, online mod-
els are dynamics, timely updating with incoming data
to maintain accuracy, thus effectively addressing changes
in dynamic characteristics. Many scholars have explored
online modelling algorithms to achieve the timely updat-
ing of ship maneuvering models. For example, Yue et al.
(2022) proposed an adaptive update law based on trun-
cated integral filter regression, which enables the model
parameters to be updated online. Wang et al. (2022)
proposed a real-time parameter identification method
based on nonlinear Gaussian filtering for a nonlinear
response model. This approach is verified based on the
simulation data of the Mariner ship’s zigzag maneuvers.
Xu et al. (2019) used incremental least squares support
vector machines (LSSVM) to identify parameters in the
nonlinear response model and conducted a comparative
analysis with offline method. Ouyang and Zou (2021)
proposed a sliding window method based on Gaussian
process regression to improve the adaptability of models.
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In addition, Pei et al. (2023) proposed an online predic-
tion framework based on the least square-twin support
vector machine with an event-triggered mechanism for
underwater vehicles. The above studies mainly explored
online modelling from an algorithmic design perspec-
tive, while their algorithm evaluations were constrained
to scenarios with constant conditions.

Addressing scenarios with changing dynamic charac-
teristics, Wang et al. (2022) developed an adaptive pre-
dictor using incremental Gaussian Process regression,
testing it through simulations of 20°/20° zigzag maneu-
vers under dynamic ocean conditions. Chen et al. (2023)
introduced a sliding window based LSSVM method for
modelling ship motions with four degrees of freedom
(DOF), and a simulation test is conducted under variable
wave conditions. Both studies employed an error detec-
tion mechanism to determine the appropriate time for
model updates. In the previous study, Yu et al. (2023, June
11) analyzed two popular online learning patterns, i.e.
incremental learning and sliding window, under varying
loading conditions. The results show that both incremen-
tal learning and sliding windows can ultimately update
the model under varying loading conditions. However,
the accuracy of the updated model cannot be guaranteed
without acquiring sufficient new data.

Overall, the effectiveness of the above online mod-
elling strategies relies on the accumulation of sufficient
samples. This process typically requires a long time, lead-
ing to a slow adaptation to large changes. Nevertheless,
changes in dynamic characteristics are sometimes repet-
itive. In such reoccurring scenarios, the onlinemodelling
methods still require continuous retraining to readapt to
the current dynamics. This leads to repeat updating or
training of models, resulting in significant consumption
of time and resources.

Adaptive ensembles have proven its value as an effec-
tive way to cope with non-stationary environments. As
developed from the online version of ensemble learn-
ing, adaptive ensembles typically employ the following
strategies (Polikar, 2012): (1) adaptation of the model’s
weights; (2) adaptation of the model’s parameters; (3)
creation and addition of new models to the ensem-
ble. Despite the demonstrated value of adaptive ensem-
bles, there are fewer adaptive ensemble studies focusing
on regression tasks. For instance, Kadlec and Gabrys
(2011) introduced an incremental soft sensing regres-
sion algorithm using a sliding window technique, where
process changes are detected by t-tests, and models are
dynamically updated and weighted based on window
data. Kaneko and Funatsu (2014) proposed an adap-
tive ensembles method based on multiple support vector
regression models, periodically updated and weighted
by the latest data window. Gomes Soares and Araújo

(2015) proposed an online weighted ensemble model for
regression problems, which integrates on-line inclusion
and removal of models, dynamic adaptation of model’s
weights based on recent predictions, and on-line adjust-
ment of model’s parameters.

To quickly adapt to ship dynamic changes and enhance
model applicability, this study proposes an adaptive
weighted ensemble learning framework with fast adap-
tation capability, especially for handling scenarios with
reoccurring ship dynamics. To validate the effectiveness
of the proposed online prediction method, test scenar-
ios are created where changes in ship maneuverability
are induced by variations in ship navigation speed and
these changes are assumed to be unforeseen. The adap-
tive weighted ensemble model and the offline model are
tested and compared with zigzag and turningmaneuvers.
The results demonstrate that the proposed approach can
address the need for rapid response to changes and also
broaden the potential model capability.

This work is organized as follows: Section 2 presents
the problem formulation for online modelling of changes
in ship dynamics. The adaptive weighted ensemble learn-
ing framework for shipmaneuveringmotions is designed
in detail in Section 3. The experimental design and results
are shown in Section 4. The conclusions are drawn in
Section 5.

2. Problem formulation

Changes in ship maneuverability, influenced by varying
load conditions, navigational patterns, and external con-
ditions, can lead to inaccuracies in previously established
models over time. In the field of machine learning, this
phenomenon is identified as concept drift, which refers to
the statistical properties of the target domain change over
time in a dynamic or non-stationary environment (Gama
et al., 2014). Formally, concept drift can be described as
follows (Lu et al., 2018).

Given a time period T0,t = [0, t], a set of sam-
ples denotes as S0,t = {d0, . . . , dt}, where di = (Xi, yi)
is a group of observations at a certain time, contain-
ing a feature vector Xi and output yi. Assuming that
S0,t follows a certain distribution FT0,t (X, y), concept
drift occurs from the timestamp t+ 1, resulting in
FT0,t (X, y) �= FTt+1,∞(X, y). This can also be expressed
as ∃t : Pt(X, y) �= Pt+1(X, y), where Pt(X, y) denotes the
joint probability of X and y at timestamp t. According to
the rate and manner of data distribution change, concept
drift can be divided into four types: sudden drift, grad-
ual drift, incremental drift and reoccurring concepts, as
shown in Figure 1.

In general, the ship maneuvering model can be
denoted as a function f̂ : Z→ Y that maps a feature
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Figure 1. Types of concept drift (Gama et al., 2014).

vector Xi (Xi ∈ Z) to an output vector yi (yi ∈ Y), where
Z ⊆ R

d denotes the domain of the features and Y ⊆
R
d′ denotes the domain of the outputs, with dimen-

sions d, d′ ∈ N. Assuming that the ship dynamics in the
current period Tc can be adequately characterized as a
function fTc , we can construct a model f̂Tc to approx-
imate fTc by minimizing the Error(f̂Tc , fTc). However,
when the ship’s dynamic characteristics suffer a con-
cept drift at the period Tnew that changes fTc to fTnew ,
the f̂Tc will not be able to meet the accuracy require-
ments for the task at hand. At this time, an online mod-
elling approach is expected to adjust the model f̂Tc to
approximate fTnew . In this paper, the concept drift occers
within the normal range of ship maneuvers, excluding
hazardous behaviours. The reoccurring concept refers to
the repetition of dynamic characteristics. For instance,
when the ship dynamic changes from state A to state B
and then repeats to state A, it exemplifies a reoccurring
concepts.

In real-world ship navigation, the concept drift in ship
maneuverability may be a combination of different types
of concept drift. For the first three types of concept drift in
Figure 1, themodel needs to be updated to accommodate
these drifts, while reoccurring concepts can be quickly
adapted by reusing previous models.

To balance the accuracy and responsiveness of the
model under concept drift, this study aims to design an
ensemble learning framework with real-time adjustment
of weights. This involves both adapting to unknown con-
cept drift and reusing previous models for reoccurring

Figure 2. Online constructionandpredictionof ensemblemodel.

concepts. The basic idea is to create models for specific
conditions as base models and combine the predictions
by adjusting the weights of the base models online, thus
enhancing the adaptive capacity of the ensemble model.
The ensemble model f̂ensemble is expressed as:

f̂ensemble(Xi) = w1 f̂1(Xi)+ w2 f̂2(Xi)+ . . .+ wnf̂n(Xi)

(1)

where f̂j (j = 1, 2, . . . , n) represents the base models and
wj denotes the weight of f̂j. It should be noted that the
number of base models n is not fixed. New base mod-
els will be created and integrated into the ensemble
model when new concept drift is detected. Meanwhile,
the weight wj is dynamically updated during the online
prediction process to cope with reoccurring concepts.
The schematic is shown in Figure 2.

To establish the aforementioned framework, the main
issues involve how to detect concept drift, how to train a
newmodel, and how to adjust the weights of base models
to quickly adapt to reoccurring concepts. The following
section will explore specific solutions to these challenges.

3. Adaptive weighted ensemble learning
framework

The establishment of the adaptive weighted ensemble
learning framework lies in the online construction of
ensemble models and the design of adaptive strategies.
Ensemble learning is considered to be an effective way
to deal with concept drift, especially reoccurring con-
cepts. It combines the predictions ofmultiple basemodels
to improve the final prediction. As base models store
the information about historical concepts, a reasonable
combination strategy enables the effective recalling of the
corresponding models for reoccurring concepts.

3.1. Overview of the framework

For the specific problem of ship maneuvering mod-
elling, the change monitoring mechanism, the online



4 Y. YU ET AL.

batch integration modelling approach, and the adaptive
weighting mechanism are designed. To cope with the
concept drift during ship navigation, the changemonitor-
ing mechanism continuously monitors dynamic changes
by the prediction bias of the ensemble model. Upon the
detection of the concept drift, a new base model is cre-
ated using an online batch modelling approach, and the
base model is then integrated into the ensemble model.
Furthermore, the weights of basemodels are dynamically
adjusted according to the current scenario based on the
adaptive weighting mechanism.

The workflow of the adaptive weighted ensemble
learning framework for ship maneuvering modelling is
shown in Figure 3. The specific phases are as follows:

(1) Modeling and Integration Phase: To characterize
unknown nonlinear dynamic features, a data-driven
algorithm creates a base model using a batch sliding
window. Subsequently, the base model is integrated
into the ensemble model.

(2) Change Monitoring Phase: The developed ensem-
ble model provides multi-step iterative predictions
from a previous moment to the current moment.
The cumulative deviation Et is utilized to ascertain
the occurrence of the concept drift. If changes are
detected, the process will revert to the Modeling
and Integration Phase (1). Otherwise, the procedure
transitions into the Weights Adjustment Phase (3).

(3) Weights Adjustment Phase: Tomake themodel have
a better performance in the present, this phase adap-
tively adjusts the weights of base models. After
updating weights, the procedure goes back to the
Change Monitoring Phase (2) at the next time step
and proceeds to iterate. Meanwhile, online predic-
tions of ship maneuvering motions can be per-
formed if a prediction task is required.

By following the above workflow, the model can be
updated online to ensure accurate predictions of ship
maneuvering motions during ship navigation.

The adaptive weighted ensemble learning algorithm is
specifically described in Algorithm 1.

The algorithm starts at step 1 with data stream D as
input, defining the size of the data window W and the
error window N, as well as the error threshold Ke for
adding a new model. In step 2, a series of variables are
initialized, including the set of models E , the number of
models k, and time t. Dt and dt represent the data win-
dow and the errorwindow at time t, respectively. The new
model fk trained with Dt is obtained at step 3, and it is
added to E after setting k and the weight wk.

The online phase of the algorithm runs from step 4
to step 5. The windows slide by 1 time step every time

Figure 3. The workflow of the adaptive weighted ensemble
learning framework.

a new sample (Xt , yt) is received (step 4a). New sample
is added to the window and old sample is removed from
the window. The prediction ŷt of the ensemble model is
calculated and the deviation is judged (step 4b and step
4c). If the prediction deviation exceeds the set threshold
Ke, step 4c (i) and step 4c (ii) are executed. The windows
slide bym time steps to update Dt and dt , a newmodel f0
is trained with Dt , and it is added to E after setting k, wk
and fk. Conversely, if the prediction meets the accuracy
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Algorithm 1: Adaptive weighted ensemble learning

1. Input: data stream D = {(Xt , yt)|Xt ∈ R
r , yt ∈ R, t = 1, 2, . . .};

data window’s size, W; error window’s size, N; error threshold to add
a newmodel, Ke ;
2. Initialization: set of models E ← ∅; number of models k = 0;
time t = W; data window Dt = {(Xi , yi)}Wi=1 ⊂ D; error window dt =
{(Xj , yj)}Wj=W−N+1 ⊂ Dt ;
3. fk ← obtain a newmodel trained withDt ; set k← k + 1,wk = 1
and E ← E ∪ fk ;
4. while true do:

(a) slide windows by 1 time step: t← t + 1; Dt = Dt−1 +
(Xt , yt)− (Xt−W , yt−W); dt = dt−1 + (Xt , yt)− (Xt−N , yt−N);

(b) predict yt as: ŷt =
(

k∑
j=1

wjfj(Xt)

)
/

k∑
j=1

wj ;

(c) if |(ŷt − yt)/yt| > Ke
(i) slide windows byW time step: t← t +W;
(ii) f0 ← obtain a newmodel trainedwithDt ; set k← k +

1,wk = 1, fk ← f0, and E ← E ∪ fk ;
(d) obtainMSEtj for each model fj ∈ E on dt ;
(e) weight all models from E withMSEtj ;

5. end while

requirement, the weights of the models are updated (step
4d and step 4e). The mean square error MSEtj of each
model fj ∈ E at time t is obtained on dt , and the weights
of all models are assigned with MSEtj .

3.2. Changemonitoringmechanism

The established model may no longer be able to pro-
vide accurate predictions when ship dynamics change,
which is externally reflected as excessive model pre-
diction errors. The change monitoring mechanism is
designed to detect the concept drift of ship dynamic
characteristics and thus determine when to create a new
base model to expand model capabilities. The cumula-
tive deviation of predictions relative to actual values is
used as an evaluation indicator for the changemonitoring
mechanism.

Assumed that there are n base models in the ensem-
ble model: f1, f2, . . . , fn, where each base model contains
three degrees of freedom as fn = {fn,u, fn,v, fn,r}, com-
prising the surge velocity u, sway velocity v, and yaw
rate r, respectively. The final prediction ûk+1, v̂k+1, r̂k+1
of the ensemble model for the next time step can be
obtained as:

ûk+1 =

n∑
i=1

wi,ufi,u

n∑
i=1

wi,u

, (2)

v̂k+1 =

n∑
i=1

wi,vfi,v

n∑
i=1

wi,v

, (3)

r̂k+1 =

n∑
i=1

wi,rfi,r

n∑
i=1

wi,r

, (4)

where wi,u, wi,v and wi,r represent the weights of the ith
base models in the surge, sway, and yaw rate direction,
respectively.

In the multi-step predictions, the predicted values
are used as the inputs at the next time step. In other
words, an iterative prediction is performed to simulate
the ship maneuvering process. Pictorially, this process
can be described by Figure 4, where Dt , Pt(M) and Et
represent the collected data, theMth step predicted value,
and the cumulative deviation at time step t, respectively.
In details, the cumulative deviation Et is the absolute per-
centage error that balances the difference in magnitude
between the three degrees of freedom. It is calculated by
the following formula:

Et =
∣∣∣∣Pt(M)− Dt

Dt

∣∣∣∣× 100% (5)

The judgment condition for detecting dynamic changes
is represented as:

(Etu > Ke) ∧ (Etv > Ke) ∧ (Etr > Ke) (6)

where Ke denotes a predefined threshold. If Etu, Etv and
Etr all exceed Ke, it implies that the ensemble model can-
not meet the requirements of the prediction accuracy at
the current moment. At this point, a new model will be
created and integrated to expand the capabilities of the
ensemble model. The setting of the threshold Ke needs
to consider as a trade-off between prediction accuracy
and computational demands. Setting a small threshold
means that even small changes in dynamics will trig-
ger updates to the model. While this setting ensures that
the model stays up-to-date, it may require more compu-
tational resources to handle the updates. On the other
hand, computational resources can be conserved by set-
ting a higher threshold, but the reduction in prediction
accuracy needs to be tolerated at the same time. Hence, it
is crucial to establish a reasonable threshold according to
the specific application scenarios.

3.3. Online batch integrationmodelling approach

New base models need to be created to adapt to the
changes when changes are detected. Both sample-based
learning algorithms and batch-based learning algorithms
can be employed to establish a base model online. It
is possible to replace the online algorithm in a mod-
ular manner. In this study, the batch-based learning is
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Figure 4. Calculation of cumulative deviation.

Figure 5. Online construction of the ensemble model.

illustrated as an example in Figure 5. After a change
is detected, the data-driven algorithm uses the data in
the batch sliding window to create a new base model.
Then, the base model is subsequently integrated into the
ensemble model.

3.4. Adaptive weightingmechanism

The adaptive weighting mechanism dynamically adjust
theweights in Equation (1) based on the prediction errors
of each base model. This adjustment allows the ensemble
model to adapt to reoccurring scenarios while also using
interpolations from existing models to cover scenarios
that have not yet been explicitly modelled.

A sliding window of fixed size is used to store mul-
tiple one-step prediction errors, as shown in Figure 6.
Each base model f̂j generates a set of errors within N
time steps, where each error is a one-step prediction bias.
The Dt , ptj(N) and etj(N) represent the collected data,
the Nth one-step predicted value, and the correspond-
ing square error at time step t, respectively. The sliding
window of errors moves as new data are collected and the

corresponding errors are calculated, removing old errors
while incorporating new ones.

The mean square error MSEtj is applied to quantify
the performance of the base model f̂j at time step t, as
follows:

MSEtj =
1
N

N∑
i=1

etj(i) (7)

The weight wt
j of the model is dynamically adjusted as:

wt
j =

1
exp(α ·MSEtj)

, (8)

where α is a predefined error sensitivity factor. Weight
adjustments remain relatively even across all basemodels
when α is small, indicating that the process is insensi-
tive to errors at low values of α. Conversely, the well-
performing base models have a more significant impact
when α is large, while the poor-performing base models
do not negatively impact the overall performance of the
ensemble model.



ENGINEERING APPLICATIONS OF COMPUTATIONAL FLUID MECHANICS 7

Figure 6. The sliding window of errors for the adaptive weighting mechanism.

Table 1. Principal particulars of KCS.

Parameter Full-scale

Length between the perpendiculars L[m] 230.0
Breadth B[m] 32.2
Draft d[m] 10.8
Displacement volume ∇[ m3] 52046
Block coefficient Cb 0.651
Longitudinal coordinate of the centre of gravity xG[m] −3.39
Metacentric height GM[m] 0.60
Metacenter height above baseline KM[m] 14.1
Propeller diameter Dp [m] 7.9
Propeller pitch ratio p 0.997
Number of propeller blades Z 5
Rudder area including the horn AR[m2] 54.43

4. Experimental design and results

4.1. Test scenario setup: shipmaneuvers at varying
speeds

To evaluate the performance of online predictions under
concept drift, shipmaneuver scenarios at different speeds
are chosen as test cases. Notably, changes in ship speeds
can result in different dynamic characteristics of ship
maneuvering motions, which can effectively represent
suddendrift and reoccurring concepts during navigation.
Additionally, the concept drift is treated as unforeseen
information to evaluate the drift detection and adapta-
tion capability of the proposed method.

The KCS container ship is chosen as the object in
this study, with its principal characteristics outlined in
Table 1. The 3-DOFMMGmodel (Son &Nomoto, 1981)
is employed to generate data and simulations are per-
formed at five navigation speeds: 15.5, 18.1, 19.8, 22.3,
and 24.0 knots.

The test scenarios are conducted using 20°/20° zigzag
maneuvers and 30° turning maneuvers at varying navi-
gation speeds. These variations in speeds correspond to
the concept drift in dynamic characteristics. The speeds

Table 2. Vessel speeds across different times.

Time Speed (knots)

0 ∼ 500s 15.5
500 ∼ 1000s 19.8
1000 ∼ 1500s 24.0
1500 ∼ 2000s 15.5
2000 ∼ 2500s 19.8
2500 ∼ 3000s 24.0
3000 ∼ 3500s 18.1
3500 ∼ 4000s 22.3

Figure 7. The zigzag maneuvers at 15.5kn, 19.8kn and 24.0kn.

set for different periods are shown in Table 2. The speed
changes are produced by altering the propeller revolu-
tion. The concept drift occurs at 500, 1000, 1500, 2000,
2500, 3000 and 3500 s, respectively. In this case, the recur-
rence of speeds represents reoccurring concepts. The
simulation time for each scenario is 4000 s, with a data
sampling interval of 0.5 s.

Figure 7 illustrates the difference in ship maneuver-
ability at 15.5, 19.8, and 24.0 knots by taking the 20°/20°
zigzag maneuver as an example. The overshoot angle
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Table 3. Comparisons of zigzag maneuvers at different speeds.

15.5kn 19.8kn 24.0kn

1stψos
1(°) 16.9 17.3 19.0

2ndψos(°) 15.2 17.5 19.2
3rdψos(°) 11.7 14.3 16.1
1sttos2(s) 50.0 43.0 39.0
2ndtos(s) 133.0 111.0 97.0
3rdtos(s) 228.0 187.0 161.0

1 Denotes the overshoot angle.
2 Denotes the time to check yaw.

and the time to check yaw are recorded in Table 3. It
is evident that the ship maneuverability is significantly
influenced by its velocity. At higher navigation speeds, the
ship can respond more quickly to steering inputs, which
is reflected in the shorter time to reach the overshoot
angle, but it also has a greater tendency to deviate from
its intended course, resulting in a larger overshoot angle.
These changes in dynamic characteristics may lead to the
ineffectiveness of the model such as the Abkowitz model,
which is based on a Taylor series expansion around the
steady state of forward motion with a constant speed.
Therefore, it is necessary to update the model to ensure
the accuracy of online predictions.

4.2. Approach setup and description

For the data-driven modelling of the base model, a para-
metricmodelling scheme is chosen. The equations of ship
maneuvering motion are represented by the Abkowtiz
model shown in Appendix A, and parameter estima-
tion is implemented using ordinary least squares (OLS)
regression. It is worth noting that this part of the mod-
elling scheme can be replaced by other schemes. The
proposed framework is not restricted to specific ship
dynamic models or data-driven algorithms.

The following setup is employed for the adaptive
weighted ensemble learning method:

Modeling and Integration Phase: The batch sliding
window size W is set 500 to align with the data volume
requirements for data-driven modelling.

Change Monitoring Phase: The number of multi-step
prediction stepsM is set to 20 and the absolute percent-
age error threshold Ke is set to 0.06. This means that the
20th-step predicted value is monitored with a maximum
allowable deviation of 6%.

Weights Adjustment Phase: In the case of sudden
drifts in variable-speed maneuver simulations, a smaller
error window N enables weight assignments to be more
responsive to drifts, facilitating a quicker adaptation to
changes. N is set to 5, meaning that the error window
retains the five most recent one-step prediction errors.
The role of α is to control the proportion of weight
allocation. To investigate the effect of different weight

Table 4. Changes detected in variable-speed zigzag.

Order
The step number for the

change detected Etu Etv Etr

1 1012 0.0603 0.3905 0.4192
2 2020 0.0774 0.0644 0.4802

allocation proportions on the online prediction, α is set
to two values of 4000 and 10000 and a comparative study
is conducted.

In addition, a comparison is made between the online
update framework and conventional offline modelling
approach. Specifically, the offline model is constructed
from the data under a single speed condition, corre-
sponding to the initial base model of the ensemble
model.

The Root Mean Square Error (RMSE) is utilized
for the evaluation of accuracy through the following
formula:

RMSE =
√√√√1

n

n∑
i=1

(yi − ŷi)2 (9)

where ŷi denotes the prediction value; yi is the true value;
n is the number of samples.

4.3. Results analysis and discussion

Figure 8 shows the modelling and prediction results
of the 20°/20° zigzag maneuvers at varying navigation
speeds. As described in Section 4.1, there are seven times
of speed alteration. The first two changes activate the
change monitoring mechanism, resulting in the creation
and integration of a new base model into the ensemble
model; these periods in the figure aremarked as the white
background segments. Table 4 lists the cumulative devi-
ations for the three DOFs where changes are detected,
with each exceeding the 6% threshold. During the five
subsequent speed changes, the ensemble model, with the
assistance of the adaptive weighting mechanism, adjusts
to these changeswithout the need to reactivate the change
monitoring mechanism. These periods are marked by
light pink background segments in the figure, indicating
that the model is ready for online prediction.

The online ensemble models exhibit a high fidelity to
the actual data that outperforms the offlinemodel. Specif-
ically, the online ensemble models assimilate new base
models and becomes more powerful to adjust to reoc-
curring concepts or somewith the nature of interpolating
previous dynamic features. In contrast, the offline model
deviated significantly from the simulated data after initial
velocity changes. Table 5 lists the RMSE of the predic-
tions and clearly shows that the online ensemble mod-
elling approach is superior to the offline approach. The



ENGINEERING APPLICATIONS OF COMPUTATIONAL FLUID MECHANICS 9

Figure 8. Prediction of the 20°/20° zigzag maneuvers at varying navigation speeds.

Table 5. RMSE for the prediction of variable-speed zigzag.

Offline
model

Online ensemble
model with
α= 4000

Online ensemble
model with
α= 10000

Surge speed 4.3407 0.0525 0.1116
Sway speed 0.6547 0.0388 0.0312
Yaw rate 0.1787 0.0121 0.0095

comparative result illustrates the necessity of updating
models online, as well as demonstrating the continued
accuracy and robustness of the online ensemble models
for predicting under concept drift.

The impact of the sensitivity factor α is further ana-
lyzed. In the adaptive weighting mechanism, the sensi-
tivity factor α controls the weight allocation to each base
model, whichmay influence the ensemble’s performance.
Tests are conducted by comparing two online ensemble
models with α of 4000 and 10000. Theoretically, with α
set to 4000, the weight allocation is relatively moderate,
while withα set to 10000, basemodels with smaller errors
are allocated higher weights.

Taking the prediction stage 3 as an example for anal-
ysis, the online ensemble models have been established
with three base models. These base models correspond
to the scenarios under 15.5, 19.8, and 24 knots and are
referred to as base models 1, 2, and 3, respectively. In
the prediction stage 3, there are three reoccurring con-
cepts from 3000 to 6000 steps with speeds of 15.5, 19.8,
and 24 knots, and two unknown concepts from 6000 to

Table 6. RMSE for predicting reoccurring and unknown concepts
of variable-speed zigzag.

Reoccurring concepts
(3000∼ 6000 steps)

Unknown concepts
(6000∼ 8000 steps)

α= 4000 α= 10000 α= 4000 α= 10000

Surge speed 0.0462 0.0176 0.0767 0.3263
Sway speed 0.0287 0.0062 0.0689 0.0889
Yaw rate 0.0077 0.0019 0.0227 0.0270

8000 steps with speeds of 18.1 and 22.3 knots. As the
speed changes, the weights of the base model need to be
adjusted to call the correspondingmodels to obtain a final
prediction.

Figure 9 illustrates the weights of each base model in
the surge direction for two online ensemble models from
3000 to 8000 steps. Thew1,w2 andw3 denote the weights
of the base model 1, base model 2 and base model 3,
respectively. In addition, Table 6 presents the RMSE of
two sets of online ensemble models for reoccurring and
unknown concepts of variable-speed zigzag test.

For the first three reoccurring concepts, both the cor-
responding basemodel and other basemodels contribute
to a certain extent when α is set to 4000; however, with
α of 10000, only the base model for the specific speed
is active. In comparison, the latter seems more reason-
able. According to Figure 8 and Table 6, the model with
α of 10000 is indeedmore accurate, while the model with
α of 4000 has a small prediction bias, which is gener-
ally acceptable. For the latter two unknown concepts, the
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Figure 9. The weights of the base models of variable-speed zigzag from 3000 to 8000 steps.

Figure 10. Prediction of the 30° turning maneuvers at varying navigation speeds.

final prediction is a combination of the base models for
the two adjacent speeds, which is intuitively consistent.
Notably, the weight allocation of base model is more bal-
anced when α is 4000 than α is 10000. As seen in Figure 8
and Table 6, the models with α set to 4000 yield more
accurate prediction and lower RMSE. This indicates that
the sensitivity of the weight allocation at α of 10000 is
somewhat over high, resulting in the allocation not being
reasonable enough.

The result demonstrates that α plays a key role in
balancing the ability of online ensemble models to pre-
dict both known and the unknown concepts. A large
α allows the model to adapt to reoccurring concepts,
but it is less effective in adapting to unknown concepts.
Conversely, a small α enhances the model’s adapt-
ability to unknown concepts, but this may compro-
mise the model’s accuracy in predicting reoccurring
concepts.
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Figure 11. The weights of the base models of variable-speed turning from 3000 to 8000 steps.

Table 7. Changes detected in variable-speed turning.

Order
Time step for the
change detected Etu Etv Etr

1 1012 0.0711 0.0622 0.1469
2 2013 0.0687 0.0632 0.1300

Table 8. RMSE for prediction of variable-speed turning.

Offline Model Online Model 1 Online Model 2

Surge speed 2.6977 0.0198 0.0698
Sway speed 0.3814 0.0019 0.0083
Yaw rate 0.1260 0.0009 0.0021

Figure 10 shows the prediction results of the 30° turn-
ing maneuvers at varying navigation speeds. In variable-
speed turning test, the changes are also detected twice
and then the prediction process is divided into three
stages. Table 7 presents the number of steps for which
changes are detected as well as the cumulative devia-
tions in the three DOFs. As the changes are detected,
the expansion of base models occurs, thereby extending
the capabilities of the online ensemble model. The RMSE
presented in Table 8 demonstrates that the online ensem-
ble models exhibit superior performance than the offline
model.

Figure 11 shows the weights of each base model in
the surge direction for the two online ensemble mod-
els in the variable-speed turning test from 3000 to 8000
steps. The w1, w2 and w3 denotes the weight of the base
model 1, base model 2 and base model 3 established
at 15.5, 19.8, and 24.0 knots, respectively. The predic-
tions of reoccurring concepts range from 3000 to 6000
steps, and the predictions of unknown concepts range

Table 9. RMSE for predicting reoccurring and unknown concepts
of variable-speed zigzag.

Reoccurring concepts
(3000∼ 6000steps)

Unknown concepts
(6000∼ 8000steps)

α= 4000 α= 10000 α= 4000 α= 10000

Surge speed 0.0168 0.0018 0.0298 0.2235
Sway speed 0.0020 0.0017 0.0025 0.0242
Yaw rate 0.0003 0.0002 0.0018 0.0064

from 6000 to 8000 steps. Compared to the variable-speed
zigzag test, the weight changes are smoother due to the
low frequency changes of steering angles. Table 9 presents
the RMSE of two online ensemble models for predict-
ing reoccurring and unknown concepts of the variable-
speed turning test. The same conclusion can be drawn
that extreme weight allocation has great performance
on reoccurring concepts, while moderate weight alloca-
tion can improve the generalization performance of the
ensemble. The error sensitivity factor α serves to bal-
ance the impact of predictions for both reoccurring and
unknown concepts, and the appropriate α should effec-
tively harmonize this effect. Testing reveals that the α
values ranging from 4000 to 6000 yield comparable out-
comes, implying an appropriate α lies within a certain
range. In practice, the hyperparameter selection can be
initially guided by expert knowledge. Alternatively, it can
be determined using techniques like grid search or cross-
validation.

In summary, the results validate the effectiveness of
the adaptive weighted ensemble learning framework in
the online prediction of dynamic changes in shipmaneu-
vers. The case study of ship dynamic changes due to
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varying sailing speeds demonstrates the feasibility of the
proposed method. This provides the potential for fur-
ther testing of the approach under varying environmental
conditions or on actual ships. Further research deserves
to be studied, such as the exclusion mechanism of base
models and the way to enhance the generalizability of
base models. The online ensemble models constructed
in this study not only ensure accurate predictions for
reoccurring and some unknown concept drift, but also
achieve a certain degree of autonomy, thus avoiding fre-
quent manual recalibration. With the proposed frame-
work, the model’s capability can be gradually enhanced
with the accumulation of data or the extension of the ship
voyage time. Thus, accurate and generalizable online pre-
dictions can be provided for applications such as digital
twins in the future.

5. Conclusions

This paper has described an adaptive weighted ensem-
ble learning framework to address the concept drift in
vehicle dynamics. The framework has a rapid adaptation
capability for reoccurring concepts and can consistently
updatemodels to accommodate unknown concept drifts.
The case studies have preliminarily validated the feasi-
bility of the modelling strategy and indicated that the
ensemblemodel can expand the scope of themodel capa-
bilities through interpolation. Furthermore, this frame-
work exhibits potential for wider utilization in addressing
different concept drift such as varying payloads or exter-
nal environmental disturbances. Since the adjustment of
the ensemble model is driven by the online prediction
error, the proposedmethod is especially suitable for tasks
that demand precise real-timemotion prediction, such as
in digital twins. In the era of big data, this approach can
gradually enhance the capacity of the ensemble model
by accumulating a wider range of scenario data. Con-
sequently, there is a possibility of establishing an all-in-
one model that can handle multiple scenarios effectively.
Future work will involve the detailed design of strategies
that balances the ability of base models and computa-
tional efficiency, as well as conducting application studies
on actual ships.
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Appendix A

The ship dynamic model and parametric identification frame-
workmainly refer to (Wang et al., 2019). The equations for ship
maneuvering motion can be described as a 3-DOF model that
includes surge, sway and yaw:⎡

⎣m− Xu̇ 0 0
0 m− Yv̇ mxG − Yṙ
0 mxG − Nv̇ Iz − Nṙ

⎤
⎦

⎡
⎣u̇
v̇
ṙ

⎤
⎦ =

⎡
⎣f1
f2
f3

⎤
⎦ , (A1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1 = Xu�u+ Xuu�u2 + Xuuu�u3

+Xvvv2 + Xrrr2 + Xrvrv+ Xδδδ2

+Xuδδ�uδ2 + Xvδvδ + Xuvδ�uvδ
f2 = Y0 + Yu�u+ Yuu�u2 + Yvv+ Yrr + Yvvvv3

+Yvvrv2r + Yvuv�u
+Yrur�u+ Yδδ + Yδδδδ3 + Yuδ�uδ + Yuuδ�u2δ
+Yvδδvδ2 + Yvvδv2δ
f3 = N0 + Nu�u+ Nuu�u2 + Nvv+ Nrr
+Nvvvv3 + Nvvrv2r + Nvuv�u
+Nrur�u+ Nδδ + Nδδδδ3

+Nuδ�uδ + Nuuδ�u2δ + Nvδδvδ2 + Nvvδv2δ

,

(A2)

wherem is themass of the ship, u, v, r and δ are the surge speed,
sway speed, yaw rate and rudder angle, respectively. Iz is the
moment of inertia, xG is the ordinate of the ship’s centre of grav-
ity.Xu,Yr andNv etc. are the hydrodynamic coefficients. Y0,N0
are the hydrodynamic force in the direction of y-axis and the
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yaw moment about z-axis during the straight forward motion
with constant speed.�u is the disturbing quantity of the surge
speed.

In the state of the straight forward motion with con-
stant speed: u0 = U0, �u = u− u0, v0 = r0 = δ0 = u̇0 =
v̇0 = ṙ0 = 0. And the resultant speed: U = [(u0 +�u)2
+ v2]1/2.

Discretizing the continuous equations of motion by Euler’s
method:

u̇(k) = �u(k+ 1)−�u(k)
h

(A3)

v̇(k) = v(k+ 1)− v(k)
h

(A4)

ṙ(k) = r(k+ 1)− r(k)
h

(A5)

where h is the sampling interval, k and k+ 1 are the adjacent
sampling time steps.

Combining Equations (A1) ∼ (A5), the following formulas
can be obtained:

�u(k+ 1)−�u(k) = a1�u(k)U(k)+ a2�u2(k)

+ a3�u3(k)
U(k)

+ a4v2(k)+ a5r2(k)

+ a6v(k)r(k)+ a7δ2(k)U2(k)

+ a8�u(k)δ2(k)U(k)

+ a9v(k)δ(k)U(k)

+ a10�u(k)v(k)δ(k), (A6)

v(k+ 1)− v(k) = b1U2(k)+ b2�u(k)U(k)+ b3�u2(k)

+ b4v(k)U(k)+ b5r(k)U(k)+ b6v3(k)
U(k)

+ b7v2(k)r(k)
U(k)

+ b8v(k)�u(k)

+ b9r(k)�u(k)+ b10δ(k)U2(k)

+ b11δ3(k)U2(k)

+ b12�u(k)δ(k)U(k)+ b13�u2(k)δ(k)

+ b14v(k)δ2(k)U(k)+ b15v2(k)δ(k),
(A7)

r(k+ 1)− r(k) = c1U2(k)+ c2�u(k)U(k)+ c3�u2(k)

+ c4v(k)U(k)+ c5r(k)U(k)+ c6v3(k)
U(k)

+ c7v2(k)r(k)
U(k)

+ c8v(k)�u(k)

+ c9r(k)�u(k)+ c10δ(k)U2(k)

+ c11δ3(k)U2(k)

+ c12�u(k)δ(k)U(k)+ c13�u2(k)δ(k)

+ c14v(k)δ2(k)U(k)+ c15v2(k)δ(k)
(A8)

The above equations can be further abbreviated as:
�u(k+ 1)−�u(k) = AP, (A9)

v(k+ 1)− v(k) = BN, (A10)

r(k+ 1)− r(k) = CZ, (A11)

where P, N, and Z are the variable vectors, which can be
expressed as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P = [�u(k)U(k),�u2(k),
�u3(k)
U(k)

, v2(k), r2(k), v(k)r(k),

δ2(k)U2(k),�u(k)δ2(k)U(k), v(k)δ(k)U(k),
�u(k)v(k)δ(k)]Tl×l0
N = Z = [U2(k),�u(k)U(k),�u2(k), v(k)U(k), r(k)U(k),
v3(k)
U(k)

,
v2(k)r(k)
U(k)

, v(k)�u(k), r(k)�u(k), δ(k)U2(k),

δ3(k)U2(k),�u(k)δ(k)U(k),�u2(k)δ(k), v(k)δ2(k)U(k),
v2(k)δ(k)]T1×15,

(A12)

A, B and C are the parameter vectors to be identified:⎧⎨
⎩
A = [a1, a2, a3, a4, a5, a6, a7, a8, a9, a10]1×10
B = [b1, b2, b3, b4, b5, b6, b7, b8, b9, b10, b11, b12, b13, b14, b15]1×15
C = [c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15]1×15

(A13)

For multiple linear regression, the regression equation is
expressed as:

y = Xβ̂ , (A14)

X is the eigenvalue matrix, β̂ is the parameter vector, and y
is the labelled value vector, expressed respectively:

X =
⎡
⎢⎣

1 x11 · · · x1n
1 x21 · · · x2n
· · · · · · · · · · · ·
1 xm1 · · · xmn

⎤
⎥⎦ , β̂ =

⎡
⎢⎢⎣
β̂0
β̂1
· · ·
β̂n

⎤
⎥⎥⎦ , y =

⎡
⎣ y1
· · ·
ym

⎤
⎦ ,

(A15)

wherem is the number of samples, n is the number of features.
The loss function is defined as:

J(β̂) =
m∑
i=1

∣∣∣∣∣∣yi −
⎛
⎝β̂0 + n∑

j=1
xijβ̂j

⎞
⎠

∣∣∣∣∣∣
2

, (A16)

Solve for the parameter vector β̂ by minimizing J(β̂), which
is derived for β̂ and made equal to zero:

∂J(β̂)
∂β̂
= XTXβ̂ − XTy = 0, (A17)

The parameter vector is obtained from Equation (A17):

β̂ = (XTX)−1XTy (A18)
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